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COHERENT DETECTION OF RADAR TARGETS
IN K-DISTRIBUTED, CORRELATED CLUTTER

INTRODUCTION

The coherent detection of radar targets in a background of correlated non-Gaussian clutter is a
difficult problem that has recently begun to motivate active research. As a problem in detection
theory, this problem is well understood. The optimum detection procedure is given by the Neyman-
Pearson likelihood ratio. However, to formulate the likelihood ratio, a representation, such as a
closed-form description, of the multivariate probability density function (pdf) is required. The model-
ing of this multivariate pdf usually is accomplished by extending knowledge about the univariate pdf
and the covariance matrix associated with the process. In the absence of knowledge of the complete
structure of the multivariate pdf, this extension is necessarily arbitrary and is usually motivated by the
researcher's desire for mathematical tractability.

One such extension of the problem of detecting radar targets in non-Gaussian clutter has been
described by Cantrell [1] and by Farina et al. [2]. The approach taken in these studies was based on
the transformation noise model described by Martinez et al. [3]. This model maps a given multivari-
ate pdf, usually Gaussian, into a non-Gaussian multivariate pdf in such a way that the resulting pdf
has the required marginal pdf's and the required covariance matrix. Cantrell [4] also applied this
same technique to the radar problem by starting with a bivariate complex Cauchy pdf instead of a
Gaussian pdf. In each of these cases, the result was the specification, based on the likelihood ratio,
of a detection scheme that yields improved detection performance over the performance obtained by
processing the same data with a detector designed for Gaussian noise. Although this type of com-
parison is not a measure of the optimality of the non-Gaussian detector, it does reveal the benefit to
be gained by correctly identifying the clutter process as non-Gaussian rather than assuming that it is
Gaussian.

Other methods for constructing a multivariate pdf with specified marginals and a specified
covariance matrix are available, and one of these alternate methods is used in this report. The
approach followed here is motivated by physical arguments about the nature of electromagentic
scattering from the surface of the sea [5] and is applicable to the problem of detecting radar targets in
sea clutter. The clutter process is modeled as a nonhomogeneous Gaussian process where the clutter
power level is a random variable. This model results in the so-called spherically invariant random
process (SIRP), which has been described in the literature [6-11]. The problem of target detection in
a SIRP has been the subject of little investigation. Yao [8] examined the case in which the detection
threshold is set equal to 1. Goldman [12] examined the conditions under which correlation receivers
are optimal. Picinbono and Vezzosi [13,14] examined the asymptotic detection of a weak signal in
the presence of a real SIRP and found that the asymptotic detector is independent of the pdf of the
unknown power level. Spooner [15] examined the performance of the optimum detector for the prob-
lem in which the form of the pdf of the power level is known and the data are comprised of indepen-
dent samples. None of these results is directly applicable to this study, although Picinbono and Vez-
zosi did derive the form of the likelihood ratio for the problem considered here. This report exam-
ines the problem of radar target detection with a small number of samples.

Manuscript approved March 4, 1988.
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In this report, the multivariate pdf that describes the non-Gaussian clutter process is obtained by
averaging a multivariate complex Gaussian pdf with respect to a random variable that multiplies the
normalized correlation matrix, i.e., the variance or (in the vocabulary of sea clutter researchers) the
power level. The likelihood ratio is then obtained in closed form. The resulting test depends on the
unknown signal amplitude and unknown initial phase. An approximation to this test that is indepen-
dent of the signal amplitude and initial phase is then formulated, and the detection performace of this
approximate test is evaluated for some specific examples. This detection performance is compared to
the performance of the optimum test in which the signal amplitude and phase are known and to the
performance of the Gaussian matched-filter detector against the same clutter data.

MULTIVARIATE PROBABILITY DENSITY FUNCTION

A univariate pdf is assumed that describes the amplitude behavior of the complex clutter process
as well as the normalized correlation matrix of the clutter process. The extension of this information
to the multivariate pdf proceeds in two steps. First, since the clutter process is modeled as a complex
process, some assumption about the statistics of the phase of the process must be made. For radar
clutter modeling, the phase of the clutter is generally assumed to be uniformly distributed. With this
assumption and the assumption that the amplitude and phase of a given sample are independent, the
univariate complex pdf can be immediately obtained. This pdf must then be extended to the mul-
tivariate domain.

The assumption of nonhomogeneous Gaussian clutter automatically satisfies the above-stated
assumptions. By nonhomogeneous Gaussian clutter, we mean that on any given detection decision,
the observation samples are drawn from a population whose statistics are described by the following
Gaussian pdf:

f (X |) (27r)-m | A I exp 2 f r 1 (1)

where

A is a positive definite normalized correlation matrix,

t indicates transpose,

the bar indicates conjugate,

m is the dimension of the problem (i.e., number of pulses),

x is the received signal vector of length m, and

-r is the unknown power level that varies from one oservation to the next according to a pdf

f(T)-

The resulting multivariate pdf that describes the non-Gaussian clutter process is obtained as

f(X) = f(x |r)f (r)dr

{x 1 xI A-lxl
q Fx 2 T X(2

1 f (-r)d 7 (2)
(2-7r)mnIA I 0
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The choice of f (r) influences the statistical behavior of this process. To ensure that this statisti-
cal behavior matches the desired univariate amplitude pdf g ( I x I ) f (7) is chosen as the solution to
the integral equation

g(|x |) = 0 g ( I xI I| |)f (r)dr

(3)

where g (I x I I T) is a Rayleigh pdf conditioned on the parameter r. This integral equation is in gen-
eral very difficult to solve. However, if g( I x I ) is chosen to be the so-called K distribution [16],
which has been shown to provide a good fit to sea clutter amplitude statistics [17, 18], the solution to
this equation can be found. It is given by the well-known gamma pdf,

f (T) = r re ' exp -_ T } (4)
F (v) 7

where r() is a gamma function, 1 fixes the mean of the distribution, and v controls the skewness.
Figure 1 shows curves that describe the behavior of the gamma density for different values of v.
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Fig. 1 - Power level probability density function

With the choice of the gamma pdf for the variation of the power level from one observation to
the next, the univariate amplitude pdf is given by the K-distribution

2g Ix(I
O~lX 1) = v

2
K,,1 I X I | i j . (5)

3

= 00 I X I - I X 12

10 T Imp 2,r f (,r)dr,
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The multivariate complex pdf of the clutter process is obtained by solving the integral in Eq. (2) [19].
This is given by

f (X) = L I v-m
F(v)(2ir) m I A L 2

K, - L - - XtAlxj

where Kj(-) is a modified Bessel function of the second kind of order v. Figure 2 shows curves that

describe the univariate amplitude pdf. The covariance matrix of the complex pdf is easily shown to
be equal to 7A.

-1.4

1.2

1.0 _ 0.1

x 0.8 0.5

0.6 -

0.2

Ix1

Fig. 2 - K-amplitude probability density function

NEYMAN-PEARSON TEST

The radar detection problem is defined as a problem in binary hypothesis testing [20], and the
optimum detection procedure is given by the well-known Neyman-Pearson test. The problem is for-
mulated as follows:

Select a complex vector sample y from one of two possible sta-
tistical populations

Ho: y = n

HI: y = n + s

where n is a complex vector of length m of noise samples and s is a
complex vector of length m of signal samples that is independent of
n. The desired test must decide in an optimal manner if the observed
sample y was caused by noise alone or by signal plus noise. A choice
in favor of HI is said to be a detection (either true or false).

4
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The Neyman-Pearson test is optimal in the sense that for a fixed probability of false alarm, it
maximizes the probability of detection. The test is given in the form of a likelihood ratio,

HI

. I = I) HI) < T (7)

Ho

where f (y I Ho) represents the pdf of y, given hypothesis Ho, and f (y I Hj) represents the pdf of y,
given hypothesis H1 . For the specific problem studied here, the likelihood ratio is given by

XNP = [. Ž (y -s)tA-'(y -s)]- K-m KV (y -s)'A-(y - s)]
ANP =vm__ .(8)Ljt~y Kv-m_ [_vTtl
Here the signal may be written as

s = ae s , (9)

where a is the signal amplitude, Os is the initial signal phase, and & is a complex steering vector that
represents the pulse to pulse phase shift of the signal caused by the Doppler shift. This steering vec-
tor is assumed to be known; in practice, a bank of filters is built to determine the Doppler shift of the
target. However, the signal amplitude and initial phase are are assumed to be unknown. As a result,
the likelihood ratio as given above is not suitable as a detection procedure. The given test must be

(1) accompanied by an estimator of the unknown quantities,

(2) approximated to remove the dependency on the unknowns, or

(3) averaged over an assumed statistical distribution of the unknown quantity.

In this problem, step (3) is mathematically intractable, and a combination of steps (1) and (2) is used.

ESTIMATION OF UNKNOWN SIGNAL AMPLITUDE

The estimate of the unknown signal amplitude is based on the maximum likelihood (ML) estima-
tor of the signal amplitude under the assumption that the signal phase is known. This ML estimate is
discussed in Appendix A. The estimate is given by

IstA-ly I10
stA-'s (0

Figure 3 is a histogram of the typical accuracy of this estimate against simulated data. Note that the
estimate is essentially an implementation of the matched filter. It is of interest to examine the
behavior of this estimate under the hypothesis of noise only. Appendix B shows that the probability
of the estimate being greater than or equal to a given value (provided that the hypothesis of noise

5
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Fig. 3 - Amplitude estimates; v = 1, n = 1, p = 0.98, two pulses

alone is true) may be solved for in closed form. As a result, we may establish a threshold, say Tea,

such that the probability of the amplitude estimate is greater than or equal to this threshold when the
hypothesis of noise alone is true and is equal to a desired probability of false alarm. If the amplitude
estimate exceeds this threshold, we can declare a detection without further processing.

APPROXIMATION OF NEYMAN-PEARSON TEST TO REMOVE DEPENDENCY
ON THE SIGNAL PHASE

To remove the dependency of the likelihood ratio on the initial signal phase, the quadratic form

(y -s)'A-'(y -s)
is replaced by

Iy'y + tA-ls - 2a I A-'y

If the quadratic form given above is expanded, the crux of this approximation is seen to be the
approximation of Re(s'A-ly) by I stA-ly . This is the implementation of the matched filter when
the signal phase is uniformly distributed.

EVALUATION OF DETECTION PERFORMANCE

At this point, the detection procedure may be evaluated. To facilitate the numerical work, the
log-likelihood ratio is evaluated in each case. The log-likelihood ratio yields exactly the same detec-
tion performance as the likelihood ratio. It does however require different detection threshold set-
tings. Figure 4 is schematic of the detection procedure. As shown, the estimate of the signal ampli-
tude is first formulated. If this estimate exceeds a threshold, a detection is declared and processing
stops. If the estimate does not exceed the threshold, the approximate log-likelihood ratio test is for-
mulated and a detection decision based on it is made.

6
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DECLARE TARGET

DECLARE TARGET

DECLARE NO TARGET

| t$~~~~~~~2 19 A- y t- y2 - m

Xa = In [ I - m

A/K2 A -A1y

K, -m tA-1Y - I At A-1y I2 ]
K- mL (2YtA1J

Fig. 4 - Detection procedure for approximate detector

For the examples evaluated, Pfa = 10-7, m = two pulses, p (the correlation between the two
pulses) = 0.98, v = 1, v = 0.1, 1, 5, and the steering vector is given as

st = (1 + jo 0 + j1),

which represents a 900 phase rotation between pulses. Finally, the signal-to-clutter ratio is computed
as

s/c = a 2/27.

As stated above, the threshold at the output of the amplitude estimator may be obtained in closed
form (Appendix B). Figure 5 shows curves describing this result for the three examples computed
here.

A closed-form evaluation of the detection threshold at the output of the log-likelihood ratio test
did not prove possible, but the thresholds were determined by using importance-sampling techniques
[21,22]. Figure 6 shows curves describing these results for the three examples computed. To ensure
that the probability of false alarm (Pfa) at the output of the approximate detector is essentially equal
to the desired value (10-7), the thresholds were chosen so that the Pfa caused by the amplitude esti-
mation procedure alone and the Pfa caused by the evaluation of the log-likelihood function alone were
each equal to 0.5 x 10-7. This setting ensures the Pf, at the output of the approximate detector is
< 10-7. Table 1 shows the actual threshold settings used to compute the various curves.
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Table 1 - Threshold Settings Used to Calculate Various Curves

Approximate Test, X0

v Ta |T

0.1 4.5 21.0
1 1.85 19.8

5 1.16 18.1

Gaussian Matched
Filter, Xmf

0.1 217

1 89.4

5 57.1

Optimum Neyman-Pearson Test, XNP

S/c T s/c T S/c T
-6.53 12.9 2.10 12.5 -9.03 9.1
4.95 12.5 0.51 14.0 -4.95 13.5
0.51 12.0 -0.73 14.1 -3.01 13.8

v = 0.1 -2.18 14.1 -1.42 13
-3.01 14.0 =5

v =1

To evaluate the detection performance, the Monte Carlo technique was used. The data were
generated as follows:

(1) a random number was generated from the distribution describing the power level variation:

(2) a pair of complex Gaussian samples with the desired correlation and the power level from
step (1) was generated:

(3) a signal of a given amplitude, with random initial phase and the desired phase rotation
from pulse to pulse was added to the clutter data; for clutter only, the amplitude was set to
0.

This sequence results in two observations and thus one detection decision. Figures 7 through 9 show
performance curves based on 1000 repetitions. The performance curves of the optimum Neyman-
Pearson test and the performance curves of the matched filter are also shown. The performance
curves for the optimum test assume that the signal amplitude and the initial phase are known. The
Monte Carlo technique was used to compute the performance of the test at several points; the other
values of the curves were interpolated based on these points. As shown in Fig. 9, the performance of
the optimum test for low values of signal-to-clutter ratio was extrapolated. This extrapolation was
necessary since the setting of the detection thresholds in this regime proved to be prohibitively
difficult. As a result, this particular curve is not intended to be an exact evaluation of the test's per-
formance but only a heuristic indication of this performance. The performance curves for the

10
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matched-filter case were also obtained by Monte Carlo simulation. However, the detection thresholds
for this case were obtained in closed form, as indicated in Appendix B.

The curves indicate that the optimum test can detect small signals in spiky clutter (the clutter is
said to get spikier as v - 0) much better than the matched filter can, although the performances
approach each other as the signal strength increases. The approximate test yields performance that
lies between these two cases. Also, performance of the approximate test and of the matched filter are
seen to approach each other as v - co. This occurs because the K distribution approaches the Ray-
leigh as v- -.

SUMMARY

A procedure for modeling a complex non-Gaussian clutter process as a nonhomogeneous com-
plex Gaussian process is described. The multivariate pdf associated with this clutter process is con-
structed so that it has a desired marginal amplitude pdf and a desired covariance matrix. The general
procedure requires the solution of an integral equation. For this study, the K distribution is used for
a marginal amplitude pdf, because this pdf matches sea clutter statistics and the solution to the
integral equation for this problem is known.

An approximation to the optimum Neyman-Pearson test is implemented and evaluated. This
approximation is independent of the signal amplitude and initial phase. The resulting detection per-
formance of this approximate test is less than that of the optimal test but is better than the perfor-
mance of the matched filter when applied against the same clutter data.

Because of the arbitrariness of constructing multivariate pdf's from limited knowledge of the
statistics of the clutter process, the performance of the detector cannot be truly evaluated until it is
driven by actual clutter data. However, since the clutter modeling was based on a physical model of
the scattering of electromagnetic waves from the surface of the sea, this detector is expected to
perform well against sea clutter data.
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Appendix A

AMPLITUDE ESTIMATION

Under the signal hypothesis, the pdf of the observed vector y may be written as

1 X

(27r) m A 0

exp [ 1 (y - s)'A-1(y - )'

,Tn f(T)dr,

s = eado.

The maximum-likelihood estimate of the signal strength a occurs at -f(y) = 0. Assuming that
aa

the partial differentiation may be taken inside the integral, we have

af (y) = 1 f (r) a
ac (2-)m I A I 7 T

m afx
Lexp -I (y - sA (y -s) d 1
L ep y .. 2d

Expanding the quadratic form and performing the derivative shows that the above expression equals 0
for arbitrary f (r) if

Re( A-'y) - s A-ls = 0. (A3)

Solving this equation yields

a = Re(9A-ly)/9A,-9. (A4)

for the estimate of a.

Implementation of this estimator, however, requires knowledge of the signal initial phase. To
account for our lack of knowledge, we implement

(A5)a = 1IA A- yI/ &A'1 .

14
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Appendix B

THRESHOLD SETTING FOR THE MATCHED FILTER

In this report, the form of the matched filter considered is

Xmf = I i A-ly I /a, (B1)

where

a = 1 for the detection curves

a = f A-1s for the setting of T,, .

Conditioned on the value of r and under the noise hypothesis, the pdf of Xmf is easily shown to be

f (Xmf) = exp (B2)

where

-t s- 1 s

a

Still conditioned on the value of r, we have for the probability of a false alarm

Pfa/IT= exp --

The unconditional probability of a false alarm is then

f T2ex
Pfa = So exp _- 2 jf (,r)d 

(B3)

ce
so 'r,- I exp

2 vT]

{ ar F T2j
L L <- d 

K, Lv ThJ

15
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-t -t
The thresholds T., were set by letting j = l/& A- 1s (i.e., a = & A- 1s), and the thresholds at

the output of the matched filter detector were set by letting '3 = 9^ A-l1 (i.e., a = 1). These results
were checked and verified by Monte Carlo simulation.
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